Preprocess
- spann.preprocess.anndata_preprocess(adata_spa, adata_rna, highly_variable=2000, spatial_labels=False)[source]
Preprocess the rna and spatial Anndata
- Adata_spa:
AnnData file of spatial dataset, .obs contains 'X','Y', 'source'
- Adata_rna:
AnnData file of rna dataset, .obs contains 'cell_type', 'source'
- Highly_variable:
number of highly variable genes
- Spatial_labels:
if there are ground truth spatial data labels, if True, adata_spa.obs should contains 'cell_type'
- Returns:
preprocessed AnnData file, adata_cm, adata_rna, adata_spa
- spann.preprocess.generate_dataloaders(adata_cm, adata_spa, adata_rna, batch_size=256)[source]
Generate torch datasets and torch dataloaders from preprocessed AnnData files
- Adata_cm:
AnnData file of the preprocessed common gene integrated scRNA-seq & spatial data
- Adata_spa:
AnnData file of the preprocessed spatial data
- Adata_rna:
AnnData file of the preprocessed scRNA-seq data
- Batch_size:
batch size of the dataloaders, default=256
- Returns:
domain specific genes datasets - source_sp_ds,target_sp_ds, train dataloaders - source_cm_dl,target_cm_dl, test dataloaders - test_source_cm_dl,test_target_cm_dl
- spann.preprocess.generate_ae_params(adata_cm, adata_spa, adata_rna, feat_dim=16)[source]
Generate default autoencoder parameters from preprocessed spatial and rna data
- Adata_cm:
AnnData file of the preprocessed common gene integrated scRNA-seq & spatial data
- Adata_spa:
AnnData file of the preprocessed spatial data
- Adata_rna:
AnnData file of the preprocessed scRNA-seq data
- Feat_dim:
dimension of latent features, default=16
- Returns:
encoder_parameters, decoder_parameters, output dimensions, latent dimension